A Numerical Study for the Performance of the Weno Schemes Based on Different Numerical Fluxes for the Shallow Water Equations
نویسندگان
چکیده
In this paper we investigate the performance of the weighted essential non-oscillatory (WENO) methods based on different numerical fluxes, with the objective of obtaining better performance for the shallow water equations by choosing suitable numerical fluxes. We consider six numerical fluxes, i.e., Lax-Friedrichs, local Lax-Friedrichs, Engquist-Osher, Harten-Lax-van Leer, HLLC and the first-order centered fluxes, with the WENO finite volume method and TVD Runge-Kutta time discretization for the shallow water equations. The detailed numerical study is performed for both one-dimensional and two-dimensional shallow water equations by addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities.
منابع مشابه
Accelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملComparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow
In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملDevelopment of an Implicit Numerical Model for Calculation of SUB-and Super-Critical Flows
A two dimensional numerical model of shallow water equations was developed to calculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady state equations were discretized based on a control volume method. Collocated grid arrangement was applied with a SIMPLEC like algorithm for depth-velocity coupling. A power law scheme was used for discretization of convection...
متن کامل